Calibrated Boosting-Forest
نویسنده
چکیده
Excellent ranking power along with well calibrated probability estimates are needed in many classification tasks. In this paper, we introduce a technique, Calibrated Boosting-Forest1 that captures both. This novel technique is an ensemble of gradient boosting machines that can support both continuous and binary labels. While offering superior ranking power over any individual regression or classification model, Calibrated Boosting-Forest is able to preserve well calibrated posterior probabilities. Along with these benefits, we provide an alternative to the tedious step of tuning gradient boosting machines. We demonstrate that tuning Calibrated Boosting-Forest can be reduced to a simple hyper-parameter selection. We further establish that increasing this hyper-parameter improves the ranking performance under a diminishing return. We examine the effectiveness of Calibrated BoostingForest on ligand-based virtual screening where both continuous and binary labels are available and compare the performance of Calibrated Boosting-Forest with logistic regression, gradient boosting machine and deep learning. Calibrated Boosting-Forest achieved an approximately 48% improvement compared to a stateof-art deep learning model. Moreover, it achieved around 95% improvement on probability quality measurement compared to the best individual gradient boosting machine. Calibrated Boosting-Forest offers a benchmark demonstration that in the field of ligand-based virtual screening, deep learning is not the universally dominant machine learning model and good calibrated probabilities can better facilitate virtual screening process.
منابع مشابه
Boosting Random Forests to Reduce Bias; One-Step Boosted Forest and its Variance Estimate
In this paper we propose using the principle of boosting to reduce the bias of a random forest prediction in the regression setting. From the original random forest fit we extract the residuals and then fit another random forest to these residuals. We call the sum of these two random forests a one-step boosted forest. We have shown with simulated and real data that the one-step boosted forest h...
متن کاملA Hybrid Random Forest based Support Vector Machine Classification supplemented by boosting
This paper presents an approach to classify remote sensed data using a hybrid classifier. Random forest, Support Vector machines and boosting methods are used to build the said hybrid classifier. The central idea is to subdivide the input data set into smaller subsets and classify individual subsets. The individual subset classification is done using support vector machines classifier. Boosting...
متن کاملMultiple Boosting in the Ant Colony Decision Forest meta-classifier
The idea of ensemble methodology is to combine multiple predictive models in order to achieve a better prediction performance. In this task we analyze the self-adaptive methods for improving the performance of Ant Colony Decision Tree and Forest algorithms. Our goal is to present and compare new metaensemble approaches based on Ant Colony Optimization. The proposed meta-classifiers (consisting ...
متن کاملLeveraging Ensemble Models in SAS Enterprise MinerTM
Ensemble models combine two or more models to enable a more robust prediction, classification, or variable selection. This paper describes three types of ensemble models: boosting, bagging, and model averaging. It discusses go-to methods, such as gradient boosting and random forest, and newer methods, such as rotational forest and fuzzy clustering. The examples section presents a quick setup th...
متن کاملObtaining Calibrated Probabilities from Boosting
Boosted decision trees typically yield good accuracy, precision, and ROC area. However, because the outputs from boosting are not well calibrated posterior probabilities, boosting yields poor squared error and cross-entropy. We empirically demonstrate why AdaBoost predicts distorted probabilities and examine three calibration methods for correcting this distortion: Platt Scaling, Isotonic Regre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.05476 شماره
صفحات -
تاریخ انتشار 2017